Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
1.
ACS Nano ; 18(15): 10374-10387, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567845

RESUMO

The advent of mRNA for nucleic acid (NA) therapeutics has unlocked many diverse areas of research and clinical investigation. However, the shorter intracellular half-life of mRNA compared with other NAs may necessitate more frequent dosing regimens. Because lipid nanoparticles (LNPs) are the principal delivery system used for mRNA, this could lead to tolerability challenges associated with an accumulated lipid burden. This can be addressed by introducing enzymatically cleaved carboxylic esters into the hydrophobic domains of lipid components, notably, the ionizable lipid. However, enzymatic activity can vary significantly with age, disease state, and species, potentially limiting the application in humans. Here we report an alternative approach to ionizable lipid degradability that relies on nonenzymatic hydrolysis, leading to a controlled and highly efficient lipid clearance profile. We identify highly potent examples and demonstrate their exceptional tolerability in multiple preclinical species, including multidosing in nonhuman primates (NHP).


Assuntos
Lipossomos , Nanopartículas , Silício , Animais , Humanos , Éter , RNA Mensageiro/genética , RNA Mensageiro/química , Lipídeos/química , Nanopartículas/química , Etil-Éteres , Éteres , RNA Interferente Pequeno/genética
2.
ACS Sens ; 9(4): 1706-1734, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38563358

RESUMO

The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Humanos , Dispositivos Eletrônicos Vestíveis , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Técnicas Eletroquímicas/métodos
3.
ACS Appl Mater Interfaces ; 16(15): 19605-19614, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568178

RESUMO

Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Microfluídica , Glucose/análise , Monitorização Fisiológica , Têxteis , Técnicas Biossensoriais/métodos
4.
Int J Biol Macromol ; 266(Pt 2): 131333, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574916

RESUMO

This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.

5.
Angew Chem Int Ed Engl ; : e202319832, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652238

RESUMO

Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using complexed Cu2+ as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.

6.
Int J Biol Macromol ; 267(Pt 1): 131406, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582472

RESUMO

Starch and plant fibers are abundant natural polymers that offer biodegradability, making them potential substitutes for plastics in certain applications, but are usually limited by its high hydrophilicity, and low mechanical performance. To address this issue, polylactic acid (PLA) is blended with cellulose and chitosan to create a waterproof film that can be applied to starch-fiber foaming biodegradable composites to enhance their water resistance properties. Here, plant fibers as a reinforcement is incorporated to the modified starch by foaming mold at 260 °C, and PLA based hydrophobic film is coated onto the surface to prepare the novel hydrophobic bio-composites. The developed bio-composite exhibits comprehensive water barrier properties, which is significantly better than that of traditional starch and cellulose based materials. Introducing PLA films decreases water vapor permeability from 766.83 g/m2·24h to 664.89 g/m2·24h, and reduce hysteresis angles from 15.57° to 8.59° within the first five minutes after exposure to moisture. The water absorption rate of PLA films also decreases significantly from 12.3 % to 7.9 %. Additionally, incorporating hydrophobic films not only enhances overall waterproof performance but also improves mechanical properties of the bio-composites. The fabricated bio-composite demonstrates improved tensile strength from 2.09 MPa to 3.53 MPa.

7.
Int J Biol Macromol ; 268(Pt 1): 131727, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38649073

RESUMO

Biodegradable edible films for sour cream packaging were developed based on chitosan (CS), hydroxyethyl cellulose (HEC), Olive leaf extract (OE), and titanium dioxide nanoparticles (TiO2-NPs). The prepared CS/HEC/TiO2-OE bionanocomposite films were evaluated for their antimicrobial and antioxidant activities as well as using FT-IR, mechanical, permeability, and contact angle. The effect of developed films on the lipid oxidation, microbiological load, and chemical properties of sour cream was investigated. The fabricated films had an antimicrobial impact against all tested strains. The film containing 8 % OE showed effective protection against fat oxidation, with a peroxide value of 3.21 meq O2/kg, a para-anisidine value 5.40, and free fatty acids of 0.82 mg KOH/kg. The films with OE 4 % and 8 % have a good effect on the microbiological load of sour cream for 90 days. These films did not influence the chemical composition of sour cream and therefore can be used in this sort of dairy product.

8.
J Toxicol Pathol ; 37(2): 83-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584968

RESUMO

In neurosurgical interventions, effective closure of the dura mater is essential to prevent cerebrospinal fluid leakage and minimize post-operative complications. Biodegradable synthetic materials have the potential to be used as dura mater grafts owing to their regenerative properties and low immunogenicity. This study evaluated the safety of ArtiFascia, a synthetic dura mater graft composed of poly(l-lactic-co-caprolactone acid) and poly(d-lactic-co-caprolactone acid), in a rabbit durotomy model. Previously, ArtiFascia demonstrated positive local tolerance and biodegradability in a 12-month preclinical trial. Here, specialized stains were used to evaluate potential brain damage associated with ArtiFascia use. Histochemical and immunohistochemical assessments included Luxol Fast Blue, cresyl Violet, Masson's Trichrome, neuronal nuclei,, Glial Fibrillary Acidic Protein, and ionized calcium-binding adaptor molecule 1 stains. The stained slides were graded based on the brain-specific reactions. The results showed no damage to the underlying brain tissue for either the ArtiFascia or control implants. Neither inflammation nor neuronal loss was evident, corroborating the safety of the ArtiFascia. This approach, combined with previous histopathological analyses, strengthens the safety profile of ArtiFascia and sets a benchmark for biodegradable material assessment in dura graft applications. This study aligns with the Food and Drug Administration guidelines and offers a comprehensive evaluation of the potential neural tissue effects of synthetic dura mater grafts.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38605272

RESUMO

Silk, a naturally occurring proteinaceous biopolymer with remarkable adsorbent properties, has been employed in wastewater remediation. The sericin coating, functioning as a protective barrier and rendering fibres impervious to external chemical attacks and preventing their involvement in chemical reactions, was removed using a greener alternative to harness silk as an effective adsorbent. Subsequently, the silk fibres underwent intermittent microwave degumming to extract sericin, and the fibres were utilized for the adsorptive exclusion of the hazardous methylene blue (MB) dye. The comparative batch adsorption studies (kinetics and isotherm) between raw silk fibres and degummed fibres were performed to comprehend the role of degumming on fibre adsorption efficacy by varying operating conditions, including pH, time of contact, initial adsorbate and dosage of adsorbent. The paramount adsorption capacity of raw silk was observed to be 137.08 mg g-1 and 179.14 mg g-1 for degummed silk when adsorbate conc. was 100 ppm. The kinetics of adsorption obeyed pseudo-second order suggesting that the rate controlling step is chemisorptions, and data demonstrated greatest fit to Langmuir isotherm exhibiting mono-layer adsorption. Further, biodegradability was studied by mimicking natural environmental conditions where the raw and degummed silk fibres demonstrated 51% and 53% degradation, respectively, after 180 days. Overall, based on obtained results, this study highlights the suitability of silk as an effective as well as sustainable adsorbent for the exclusion of toxic methylene blue dye from wastewater.

10.
Heliyon ; 10(4): e24348, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434039

RESUMO

Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.

11.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472849

RESUMO

An antioxidative and pH-sensitive multifunctional film, incorporating anthocyanin-rich purple sweet potato extract (PPE) was fabricated from polyvinyl alcohol (PVA) and sodium alginate (SA)/sodium carboxymethyl cellulose (CMC-Na). The film was composed of 6:4 PVA:SA/CMC-Na (mass ratio, SA:CMC-Na at 1:1) with added PPE, and changed color with changes in pH, and also had useful UV-blocking, antioxidant, mechanical, and water vapor barrier properties, which enable its use as a food coating film. In addition, the incorporation of 300 mg PPE increased the biodegradability of the film in soil from 52.47 ± 1.12% to 64.29 ± 1.75% at 17 days. The pH sensitivity of the film enabled its successful use for the evaluation of pork freshness. Cherries coated with the film had an extended shelf life from 3-4 to 7-9 days, during storage at 25 °C. Consequently, the multifunctional film can be applied to packaging for real-time pH/freshness monitoring and for effectively preserving the freshness of meat and fruit.

12.
Polymers (Basel) ; 16(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38475367

RESUMO

The authors explore the development of paper-based electronics using carbon-based composites with a biodegradable matrix based on ethyl cellulose and dibasic ester solvent. The main focus is on screen-printing techniques for creating flexible, eco-friendly electronic devices. This research evaluates the printability with the rheological measurements, electrical properties, flexibility, and adhesion of these composites, considering various compositions, including graphene, graphite, and carbon black. The study finds that certain compositions offer sheet resistance below 1 kΩ/sq and good adhesion to paper substrates with just one layer of screen printing, demonstrating the potential for commercial applications, such as single-use electronics, flexible heaters, etc. The study also shows the impact of cyclic bending on the electrical parameters of the prepared layers. This research emphasizes the importance of the biodegradability of the matrix, contributing to the field of sustainable electronics. Overall, this study provides insights into developing environmentally friendly, flexible electronic components, highlighting the role of biodegradable materials in this evolving industry.

13.
Chemosphere ; 355: 141826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552805

RESUMO

Recent studies have increasingly focused on the occurrence of plastic leachate and its impacts on aquatic ecosystems. Nonetheless, the environmental fate of this leachate in the presence of abundant natural organic matter (NOM)-a typical scenario in environments contaminated with plastics-remains underexplored. This study investigates the photo-induced leaching behaviors of dissolved organic matter (DOM) from terrestrial-sourced particles (forest soil and leaf litter) and microplastics (MPs), specifically polystyrene (PS) and polyvinyl chloride (PVC), over a two-week period. We also examined the biodegradability and spectroscopic characteristics of the leached DOM from both sources. Our results reveal that DOM from microplastics (MP-DOM) demonstrates more persistent leaching behavior compared to terrestrial-derived DOM, even with lesser quantities per unit of organic carbon. UV irradiation was found to enhance DOM leaching across all particle types. However, the photo-induced leaching behaviors of fluorescent components varied with the particle type. The MP group exhibited a broader range and higher biodegradability (ranging from 19.7% to 61.6%) compared to the terrestrial-sourced particles (ranging from 3.7% to 16.5%). DOM leached under UV irradiation consistently showed higher biodegradability than that under dark conditions. Furthermore, several fluorescence characteristics of DOM, such as the protein/phenol-like component (%C2), terrestrial humic-like component (%C3), and humification index (HIX)-traditionally used to indicate the biodegradability of natural organic matter-were also effective in assessing MP-DOM (with correlation coefficients R2 = 0.6055 (p = 0.003), R2 = 0.5389 (p = 0.007), and R2 = 0.4640 (p = 0.015), respectively). This study provides new insights into the potential differences in environmental fate between MP-DOM and NOM in aquatic environments heavily contaminated with MPs.


Assuntos
Microplásticos , Plásticos , Matéria Orgânica Dissolvida , Ecossistema , Solo/química , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos
14.
Food Chem ; 447: 138905, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452541

RESUMO

A flexible, antioxidant, biodegradable, and UV-resistant polymeric nanocomposite hydrogel with heteroatom-doped carbon dots (CDs) has been fabricated using a simple one-step in situ free radical gelation process. The hydrogel formation and their physico-mehcanical characteristics have been assessed by rheology, uniaxial tensile and compression testing. The water uptake behaviour of the hydrogels is controlled by the CDs by manipulating their internal morphology and porosity. The porous nature of the hydrogels has been found from their scanning electron microscopic images which are also supported by their anomalous diffusion-based transport mechanism. The rheological signatures of the hydrogels show delayed network rupturing due to the secondary physical crosslinking alleviated by CDs. Moreover, CDs are directly influencing the permeabilites (oxygen and moisture) by lowering the values compared to their neat hydrogel films which are essential for a packing material. The biodegradability of the hydrogel films showed gradual weight loss (<75 %) within 3 weeks. The hydrogel films also have been qualified to be acted as antibacterial and antioxidant material. The shelf-life and non-leaching of CDs from gel matrices are also performed which shows its excellent capability to be used as a potential antibacterial, biodegradable, antioxidant alternative packaging material in food sectors.


Assuntos
Carbono , Hidrogéis , Metilgalactosídeos , Antioxidantes , Antibacterianos/farmacologia , Indústria Alimentícia
15.
Chemosphere ; 354: 141729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492680

RESUMO

The accumulation of petroleum-based plastics on our planet is causing serious environmental pollution. Biodegradable plastics, promoted as eco-friendly solutions, hold the potential to address this issue. However, their impact on the environment and the mechanisms of their natural degradation remain inadequately understood. Furthermore, the specific conditions set forth in international standards for evaluating the biodegradability of biodegradable plastics have led to misconceptions about their real-world behavior. To properly elucidate the relationship between their degradability and structure, this study mimics the thermal effect on poly(lactic acid) (PLA) under standardized composting temperature. The higher the crystallinity of PLA, the lower the degradation rate, which suggests that crystallinity is a key factor in determining degradation. The composting temperature of 58 °C induces crystallization by having a structural effect on the polymer, which in turn reduces the degradation rate of PLA. Therefore, control over temperature and crystallization during the processing and degradation of PLA is crucial, as it not only determines the biodegradability but also enhances the utility.


Assuntos
Plásticos Biodegradáveis , Compostagem , Temperatura , Poliésteres/química
16.
J Environ Manage ; 356: 120522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493645

RESUMO

In the context of a circular bio-based economy, more public attention has been paid to the environmental sustainability of biodegradable bio-based plastics, particularly plastics produced using emerging biotechnologies, e.g. poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. However, this has not been thoroughly investigated in the literature. Therefore, this study aimed to address three aspects regarding the environmental impact of PHBV-based plastic: (i) the potential environmental benefits of scaling up pellet production from pilot to industrial scale and the environmental hotspots at each scale, (ii) the most favourable end-of-life (EOL) scenario for PHBV, and (iii) the environmental performance of PHBV compared to benchmark materials considering both the pellet production and EOL stages. Life cycle assessment (LCA) was implemented using Cumulative Exergy Extraction from the Natural Environment (CEENE) and Environmental Footprint (EF) methods. The results show that, firstly, when upscaling the PHBV pellet production from pilot to industrial scale, a significant environmental benefit can be achieved by reducing electricity and nutrient usage, together with the implementation of better practices such as recycling effluent for diluting feedstock. Moreover, from the circularity perspective, mechanical recycling might be the most favourable EOL scenario for short-life PHBV-based products, using the carbon neutrality approach, as the material remains recycled and hence environmental credits are achieved by substituting recyclates for virgin raw materials. Lastly, PHBV can be environmentally beneficial equal to or even to some extent greater than common bio- and fossil-based plastics produced with well-established technologies. Besides methodological choices, feedstock source and technology specifications (e.g. pure or mixed microbial cultures) were also identified as significant factors contributing to the variations in LCA of (bio)plastics; therefore, transparency in reporting these factors, along with consistency in implementing the methodologies, is crucial for conducting a meaningful comparative LCA.


Assuntos
Hidroxibutiratos , Ácidos Pentanoicos , Poliésteres , Poli-Hidroxibutiratos , Biotecnologia
17.
Water Res ; 254: 121422, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460225

RESUMO

Methanogenesis of waste biomass (WB) is a promising method for global sustainable development, reduction of pollution and carbon emission levels, and recovering bioenergy. Unlike in the methanogenesis of organic wastewater, in which microbial cells come into direct contact with the dissolved substrate, the 'solid-liquid-solid' modes in WB and between WB and microbial cells, which involve numerous solid-liquid interfaces, greatly hinder the methanogenesis efficiency of WB. Amongst all WB, waste activated sludge is the most complex, poorly biodegradable and representative. Herein, we highlight the role of water evaporation-driven solid-liquid interfacial restructuring of sludge in determining its methanogenesis efficiency. Non-free water evaporation increased surface roughness and adhesion, and compressed pore structure with numerous capillaries in sludge, resulting in a new solid-liquid interface of sludge with great capillary force and highly ordered interfacial water molecules, which provides an extremely favourable condition for high mass transfer and proton-coupled electron transfer (PCET) in sludge. This restructuring was confirmed to induce the enhancement of solid-liquid interfacial noncovalent interactions and electron transfer efficiency in the subsequent methanogenesis process (P < 0.05), promoting the effective contact between the sludge substrate and microbial cells, thereby enriching the methanogenic consortia (i.e., Clostridia and Methanosarcina were increased by 290.0 % and 239.7 %, respectively) and improving the activities of key enzymes. Stable isotope tracing and metagenomic analysis further reveal that this restructuring promoted the participation of water molecules in the methane formation by PCET-driven release of protons from water, and enhanced main methanogenesis metabolic pathways, especially the metabolic pathway of CO2-reduction methanogenesis (+65.2 %), thereby resulting in a great advance in methane generation (+147 %, P < 0.001). The findings can provide a reference for regulating directional anaerobic biotransformation of water-rich multiphase complex substrates by interfacial restructuring inducement.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/química , Anaerobiose , Biomassa , Metano , Água
18.
Bioresour Technol ; 399: 130630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522678

RESUMO

The present study aims to enhance the biomethane production potential of microalgae via a dual disintegration process. During this process, the microalgae biomass was firstly subjected to cell wall weakening by thermochemical disintegration (TC) (50 to 80 °C), pH adjustment with alkali, NaOH (6 to 10) and time (0 to 10 min) and, secondly, by bacterial disintegration (BD). TC-BD disintegration was comparatively higher (33 %) than BD (24 %), TC (8.5 %), and control (7 %). A more significant VFA accumulation of 2816 mg/L was recorded for TC-BD. Similarly, a greater substrate anaerobic biodegradability was achieved in TC-BD (0.32 g COD /g COD) than BD (0.21 g COD /g COD), TC alone (0.09 gCOD/g COD) and control (0.08 g COD /g COD), respectively. The TC-BD achieves a positive net profit and an energy ratio of + 0.12 GJ/d and 1.03. The proposed dual disintegration has a promising future for commercialization.


Assuntos
Microalgas , Biomassa , Análise Custo-Benefício , Metano , Bactérias , Anaerobiose
19.
J Agric Food Chem ; 72(12): 6444-6453, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502525

RESUMO

The development of efficient, biobased polyurethane controlled-release fertilizers from sustainable and eco-friendly biomaterials has received increased research attention, owing to concerns regarding global food security and environmental sustainability. Most previous studies focused on replacing petroleum-based polyols with biopolyols; however, the other main raw material, isocyanate, remained a petrochemical product. Herein, all-natural, plant-derived polyurethane-coated urea was successfully developed using castor oil and biobased isocyanate, and the performance of the coating shell before and after modification was compared. The results showed that the incorporation of a low dose of lauric acid copper into the coating material simultaneously enhanced the hydrophobicity and elasticity of the all-biobased polyurethane membrane, which prolonged the nitrogen release longevity from 3 to 112 days. In addition, the modified membrane showed excellent biodegradability in a soil environment. The novel all-biobased polyurethane coating material and modification technique provide insight for developing sustainable and eco-friendly controlled-release fertilizers.


Assuntos
Fertilizantes , Poliuretanos , Preparações de Ação Retardada , Polímeros , Isocianatos
20.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38350010

RESUMO

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...